Naphthalene diimide derivatives show great potential for application in neutral aqueous organic redox flow batteries (AORFBs) due to their highly conjugated molecular structure and stable two-electron storage capacity. However, the two-electron redox process of naphthalene diimides typically occurs via two separate steps with the transfer of one electron per step ("two-step two-electron" transfer process), which leads to an inevitable loss of voltage and energy. Herein, we report a novel regional charge buffering strategy that utilizes the core-substituted electron-donating group to adjust the redox properties of naphthalene diimides, realizing two electron transfer via a single-step redox process ("one-step two-electron" transfer process). The symmetrical battery testing of NDI-DEtOH revealed exceptional intrinsic stability lasting for 11 days with a daily decay rate of only 0.11%. Meanwhile, AORFBs with NDI-DMe/FcNCl and NDI-DEtOH/FcNCl exhibited a remarkable 40% improvement in peak power density at 50% state of charge (SOC) in comparison to NDI/FcNCl-based AORFBs. In addition, the battery's energy efficiency has increased by 24%, resulting in much more stable output power and significantly improved energy efficiency. These results are of great significance to practical applications of AORFBs.