Clinical translation of gene therapy has been challenging, due to limitations in current delivery vehicles such as traditional viral vectors. Herein, we report the use of gRNA:Cas9 ribonucleoprotein (RNP) complexes engineered extracellular vesicles (EVs) for in vivo gene therapy. By leveraging a novel high-throughput microfluidic droplet-based electroporation system (μDES), we achieved 10-fold enhancement of loading efficiency and more than 1000-fold increase in processing throughput on loading RNP complexes into EVs (RNP-EVs), compared with conventional bulk electroporation. The flow-through droplets serve as enormous bioreactors for offering millisecond pulsed, low-voltage electroporation in a continuous-flow and scalable manner, which minimizes the Joule heating influence and surface alteration to retain natural EV stability and integrity. In the Shaker-1 mouse model of dominant progressive hearing loss, we demonstrated the effective delivery of RNP-EVs into inner ear hair cells, with a clear reduction of Myo7ash1 mRNA expression compared to RNP-loaded lipid-like nanoparticles (RNP-LNPs), leading to significant hearing recovery measured by auditory brainstem responses (ABR).