Breaking symmetry restriction of chirality through spin-decoupled phase modulation utilizing non-mirror-symmetric meta-atoms

Opt Express. 2023 Dec 18;31(26):44076-44087. doi: 10.1364/OE.507388.

Abstract

The geometric phase in metasurfaces follows a symmetry restriction of chirality, which dictates that the phases of two orthogonal circularly polarized waves are identical but have opposite signs. In this study, we propose a general mechanism to disrupt this symmetric restriction on the chirality of orthogonal circular polarizations by introducing mirror-symmetry-breaking meta-atoms. This mechanism introduces a new degree of freedom in spin-decoupled phase modulation without necessitating the rotation of the meta-atom. To demonstrate the feasibility of this concept, we design what we believe is a novel meta-atom with a QR-code structure and successfully showcase circular-polarization multiplexing metasurface holography. Our investigation offers what we believe to be a novel understanding of the chirality in geometric phase within the realm of nanophotonics. Moreover, it paves the way for the development of what we believe will be novel design methodologies for electromagnetic structures, enabling applications in arbitrary wavefront engineering.