Objective: This study aimed to investigate and validate the effectiveness of diverse radiomics models for preoperatively differentiating lymphovascular invasion (LVI) in clinically node-negative breast cancer (BC).
Methods: This study included 198 patients diagnosed with clinically node-negative bc and pathologically confirmed LVI status from January 2018-July 2023. The training dataset consisted of 138 patients, while the validation dataset included 60. Radiomics features were extracted from multimodal magnetic resonance imaging obtained from T1WI, T2WI, DCE, DWI, and ADC sequences. Dimensionality reduction and feature selection techniques were applied to the extracted features. Subsequently, machine learning approaches, including logistic regression, support vector machine, classification and regression trees, k-nearest neighbors, and gradient boosting machine models (GBM), were constructed using the radiomics features. The best-performing radiomic model was selected based on its performance using the confusion matrix. Univariate and multivariable logistic regression analyses were conducted to identify variables for developing a clinical-radiological (Clin-Rad) model. Finally, a combined model incorporating both radiomics and clinical-radiological model features was created.
Results: A total of 6195 radiomic features were extracted from multimodal magnetic resonance imaging. After applying dimensionality reduction and feature selection, seven valuable radiomics features were identified. Among the radiomics models, the GBM model demonstrated superior predictive efficiency and robustness, achieving area under the curve values (AUC) of 0.881 (0.823,0.940) and 0.820 (0.693,0.947) in the training and validation datasets, respectively. The Clin-Rad model was developed based on the peritumoral edema and DWI rim sign. In the training dataset, it achieved an AUC of 0.767 (0.681, 0.854), while in the validation dataset, it achieved an AUC of 0.734 (0.555-0.913). The combined model, which incorporated radiomics and the Clin-Rad model, showed the highest discriminatory capability. In the training dataset, it had an AUC value of 0.936 (0.892, 0.981), and in the validation dataset, it had an AUC value of 0.876 (0.757, 0.995). Additionally, decision curve analysis of the combined model revealed its optimal clinical efficacy.
Conclusion: The combined model, integrating radiomics and clinical-radiological features, exhibited excellent performance in distinguishing LVI status. This non-invasive and efficient approach holds promise for aiding clinical decision-making in the context of clinically node-negative BC.
Keywords: Clinically node-negative breast cancer; Lymphovascular invasion; Machine learning; Multimodal magentic resonance imaging; Radiomics.
© 2023 The Authors. Published by Elsevier Ltd.