Objectives: Detection of infratentorial demyelinating lesions in multiple sclerosis (MS) presents a challenge in magnetic resonance imaging (MRI), a difficulty that is further heightened in 7 T MRI. This study aimed to assess the efficacy of a novel MRI approach, lesion-attenuated magnetization-prepared gradient echo acquisition (LAMA), for detecting demyelinating lesions within the posterior fossa and upper cervical spine on 7 T MRI and contrast its performance with conventional double-inversion recovery (DIR) and T2-weighted turbo spin echo sequences.
Materials and methods: We conducted a retrospective cross-sectional study in 42 patients with a confirmed diagnosis of MS. All patients had 7 T MRI that incorporated LAMA, 3D DIR, and 2D T2-weighted turbo spin echo sequences. Three readers assessed lesion count in the brainstem, cerebellum, and upper cervical spinal cord using both DIR and T2-weighted images in one session. In a separate session, LAMA was analyzed alone. Contrast-to-noise ratio was also compared between LAMA and the conventional sequences. Lesion counts between methods were assessed using nonparametric Wilcoxon signed rank test. Interrater agreement in lesion detection was estimated by intraclass correlation coefficients.
Results: LAMA identified a significantly greater number of lesions than DIR + T2 (mean 6.4 vs 3.0; P < 0.001). LAMA also exhibited better interrater agreement (intraclass correlation coefficient [95% confidence interval], 0.75 [0.41-0.88] vs 0.61 [0.35-0.78]). The contrast-to-noise ratio for LAMA (3.7 ± 0.9) significantly exceeded that of DIR (1.94 ± 0.7) and T2 (1.2 ± 0.7) (all P 's < 0.001). In cases with no lesions detected using DIR + T2, at least 1 lesion was identified in 83.3% with LAMA. Across all analyzed brain regions, LAMA consistently detected more lesions than DIR + T2.
Conclusions: LAMA significantly improves the detection of infratentorial demyelinating lesions in MS patients compared with traditional methods. Integrating LAMA with standard magnetization-prepared 2 rapid acquisition gradient echo acquisition provides a valuable tool for accurately characterizing the extent of MS disease.
Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.