Genome wide association study (GWAS) uncovered Alzheimer's disease (AD) risk genes linked to the endo-lysosomal pathway. This pathway seems to be the gateway of protein aggregates, such as tau and α-synuclein, to the cytoplasm. Furthermore, we and others reported that the amyloid precursor protein (APP) C99 is predominantly processed by γ-secretase in the endo-lysosomal compartments, and β-amyloid (Aβ) peptides are enriched in the same subcellular loci. While the role(s) of APP/Aβ in the endo-lysosomal pathway has not been fully established, a recent study reported that Aβ, in particular Aβ42, inhibits cathepsin D (CTSD) activity. Here, we show using a cell-free in vitro assay that Aβ42 also blocks cathepsin B (CTSB) activity. Furthermore, we uncovered that the autocatalytic processing (i.e., conversion of single chain to heavy/light chains) of CTSB and CTSD is accelerated in APP-deficient cells compared with wild-type controls. Taken together, our findings further support the negative regulation of cathepsins by Aβ.
Keywords: Alzheimer's disease; cathepsin B; cathepsin D; endo-lysosomal pathway; β-amyloid.
Copyright © 2024 Lundin et al.