Physicochemical Quantitative Analysis of the Oil-Water Interface as Affected by the Mutual Interactions between Pea Protein Isolate and Mono- and Diglycerides

Foods. 2024 Jan 4;13(1):176. doi: 10.3390/foods13010176.

Abstract

As a commercially available ingredient, the mono- and diglycerides (MDG) were widely used in a plant protein-based emulsion to provide effective, functional, emulsifying properties. The simultaneous addition of the MDG and pea protein isolate (PPI) was investigated by the methods of interfacial rheology and quantitative protein proteomics. The physicochemical quantitative analysis of the oil-water interface revealed an interfacial stability mechanism for the protein adsorption layer. For a low MDG concentration, the interfacial quantities of vicilin and albumin were increased, which could be attributed to the adsorption rate. For a high MDG concentration, both vicilin and albumin were displaced by MDG and desorbed from the interface, while legumin was more difficult to displace due to its slow adsorption and the complex structure of protein molecules. The protein molecules with the structural rearrangement interacted with MDG, exhibiting potential effects on the interfacial film structure. Combined with some nanotechnologies, the new comprehension of protein-emulsifier interactions may promote food delivery systems. The research aims to develop an in-depth analysis of interfacial proteins, and provide more innovative and tailored functionalities for the application of the plant protein emulsion.

Keywords: competition adsorption; mono- and diglycerides; pea protein isolate; quantitative protein proteomics.