Feasibility of Encord Artificial Intelligence Annotation of Arterial Duplex Ultrasound Images

Diagnostics (Basel). 2023 Dec 25;14(1):46. doi: 10.3390/diagnostics14010046.

Abstract

DUS measurements for popliteal artery aneurysms (PAAs) specifically can be time-consuming, error-prone, and operator-dependent. To eliminate this subjectivity and provide efficient segmentation, we applied artificial intelligence (AI) to accurately delineate inner and outer lumen on DUS. DUS images were selected from a cohort of patients with PAAs from a multi-institutional platform. Encord is an easy-to-use, readily available online AI platform that was used to segment both the inner lumen and outer lumen of the PAA on DUS images. A model trained on 20 images and tested on 80 images had a mean Average Precision of 0.85 for the outer polygon and 0.23 for the inner polygon. The outer polygon had a higher recall score than precision score at 0.90 and 0.85, respectively. The inner polygon had a score of 0.25 for both precision and recall. The outer polygon false-negative rate was the lowest in images with the least amount of blur. This study demonstrates the feasibility of using the widely available Encord AI platform to identify standard features of PAAs that are critical for operative decision making.

Keywords: artificial intelligence; deep learning; popliteal artery aneurysm; ultrasound.

Grants and funding

This research received no external funding.