Role of Sox3 in Estradiol-Induced Sex Reversal in Pelodiscus sinensis

Int J Mol Sci. 2023 Dec 23;25(1):248. doi: 10.3390/ijms25010248.

Abstract

The Chinese soft-shelled turtle Pelodiscus sinensis, an economically important species in China, exhibits significant sexual dimorphism. Males are more valuable than females owing to their wider calipash and faster growth. Estradiol (E2)-induced sex reversal is used to achieve all-male breeding of turtles; however, the mechanism of this sex reversal remains unclear. In this study, we characterized the Sox3 gene, whose expression level was high in the gonads and brain and exhibited significant sexual dimorphism in the ovary. During embryonic development, Sox3 was highly expressed at the initiation of ovarian differentiation. E2 and Sox3-RNAi treatment before sexual differentiation led to 1352, 908, 990, 1011, and 975 differentially expressed genes in five developmental stages, respectively, compared with only E2 treatment. The differentially expressed genes were clustered into 20 classes. The continuously downregulated and upregulated genes during gonadal differentiation were categorized into Class 0 (n = 271) and Class 19 (n = 606), respectively. KEGG enrichment analysis showed that Sox3 significantly affected sexual differentiation via the Wnt, TGF-β, and TNF signaling pathways and mRNA surveillance pathway. The expression of genes involved in these signaling pathways, such as Dkk4, Nog, Msi1, and Krt14, changed significantly during gonadal differentiation. In conclusion, the deletion of Sox3 may lead to significant upregulation of the mRNA surveillance pathway and TNF and Ras signaling pathways and downregulation of the Wnt and TGF-β signaling pathways, inhibiting E2-induced sex reversal. These findings suggest that Sox3 may play a certain promoting effect during E2-induced sex reversal in P. sinensis.

Keywords: Pelodiscus sinensis; RNAi; Sox3; gonadal differentiation; sex reversal.

MeSH terms

  • Animals
  • Estradiol* / pharmacology
  • Female
  • Male
  • Ovary
  • RNA, Messenger
  • Reptiles*
  • Transforming Growth Factor beta

Substances

  • Estradiol
  • Transforming Growth Factor beta
  • RNA, Messenger