The landscape of nanoparticle-based siRNA delivery and therapeutic development

Mol Ther. 2024 Feb 7;32(2):284-312. doi: 10.1016/j.ymthe.2024.01.005. Epub 2024 Jan 10.

Abstract

Five small interfering RNA (siRNA)-based therapeutics have been approved by the Food and Drug Administration (FDA), namely patisiran, givosiran, lumasiran, inclisiran, and vutrisiran. Besides, siRNA delivery to the target site without toxicity is a big challenge for researchers, and naked-siRNA delivery possesses several challenges, including membrane impermeability, enzymatic degradation, mononuclear phagocyte system (MPS) entrapment, fast renal excretion, endosomal escape, and off-target effects. The siRNA therapeutics can silence any disease-specific gene, but their intracellular and extracellular barriers limit their clinical applications. For this purpose, several modifications have been employed to siRNA for better transfection efficiency. Still, there is a quest for better delivery systems for siRNA delivery to the target site. In recent years, nanoparticles have shown promising results in siRNA delivery with minimum toxicity and off-target effects. Patisiran is a lipid nanoparticle (LNP)-based siRNA formulation for treating hereditary transthyretin-mediated amyloidosis that ultimately warrants the use of nanoparticles from different classes, especially lipid-based nanoparticles. These nanoparticles may belong to different categories, including lipid-based, polymer-based, and inorganic nanoparticles. This review briefly discusses the lipid, polymer, and inorganic nanoparticles and their sub-types for siRNA delivery. Finally, several clinical trials related to siRNA therapeutics are addressed, followed by the future prospects and conclusions.

Keywords: RNA interference; clinical trials; inorganic carrier; lipid nanoparticle; polymer; siRNA.

Publication types

  • Review

MeSH terms

  • Amyloid Neuropathies, Familial*
  • Lipids
  • Nanoparticles*
  • Polymers*
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Transfection

Substances

  • RNA, Small Interfering
  • Polymers
  • Lipids

Supplementary concepts

  • Amyloidosis, Hereditary, Transthyretin-Related