Prenatal exposure to maternal psychological stress is associated with increased risk for adverse birth and child health outcomes. Accumulating evidence suggests that preconceptional maternal stress may also be transmitted intergenerationally to negatively impact offspring. However, understanding of mechanisms linking these exposures to offspring outcomes, particularly those related to placenta, is limited. Using RNA sequencing, we identified placental transcriptomic signatures associated with maternal prenatal stressful life events (SLEs) and childhood traumatic events (CTEs) in 1 029 mother-child pairs in two birth cohorts from Washington state and Memphis, Tennessee. We evaluated individual gene-SLE/CTE associations and performed an ensemble of gene set enrichment analyses combing across 11 popular enrichment methods. Higher number of prenatal SLEs was significantly (FDR < 0.05) associated with increased expression of ADGRG6, a placental tissue-specific gene critical in placental remodeling, and decreased expression of RAB11FIP3, an endocytosis and endocytic recycling gene, and SMYD5, a histone methyltransferase. Prenatal SLEs and maternal CTEs were associated with gene sets related to several biological pathways, including upregulation of protein processing in the endoplasmic reticulum, protein secretion, and ubiquitin mediated proteolysis, and down regulation of ribosome, epithelial mesenchymal transition, DNA repair, MYC targets, and amino acid-related pathways. The directional associations in these pathways corroborate prior non-transcriptomic mechanistic studies of psychological stress and mental health disorders, and have previously been implicated in pregnancy complications and adverse birth outcomes. Accordingly, our findings suggest that maternal exposure to psychosocial stressors during pregnancy as well as the mother's childhood may disrupt placental function, which may ultimately contribute to adverse pregnancy, birth, and child health outcomes.
© 2024. The Author(s).