Increasing nutrient uptake and use efficiency in plants can contribute to improved crop yields and reduce the demand for fertilizers in crop production. In this study, we characterized a rice mutant, 88n which showed long roots under low nitrogen (N) or phosphorus (P) conditions. Low expression levels of N transporter genes were observed in 88n root, and total N concentration in 88n shoots were decreased, however, C concentrations and shoot dry weight in 88n were comparable to that in WT. Therefore, 88n showed high nitrogen utilization efficiency (NUtE). mRNA accumulation of Pi transporter genes was higher in 88n roots, and Pi concentration and uptake activity were higher in 88n than in WT. Therefore, 88n also showed high phosphorus uptake efficiency (PUpE). Molecular genetic analysis revealed that the causal gene of 88n phenotypes was OsbZIP1, a monocot-specific ortholog of the A. thaliana bZIP transcription factor HY5. Similar to the hy5 mutant, chlorophyll content in roots was decreased and root angle was shallower in 88n than in WT. Finally, we tested the yield of 88n in paddy fields over 3 years because 88n mutant plants showed higher PUpE and NUtE activity and different root architecture at the seedling stage. 88n showed large panicles and increased panicle weight/plant. Taken together, a mutation in OsbZIP1 could contribute to improved crop yields.
Keywords: N utilization; OsbZIP1; P uptake; root architecture; yields.
© 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.