Exceptional Entanglement Phenomena: Non-Hermiticity Meeting Nonclassicality

Phys Rev Lett. 2023 Dec 29;131(26):260201. doi: 10.1103/PhysRevLett.131.260201.

Abstract

Non-Hermitian (NH) extension of quantum-mechanical Hamiltonians represents one of the most significant advancements in physics. During the past two decades, numerous captivating NH phenomena have been revealed and demonstrated, but all of which can appear in both quantum and classical systems. This leads to the fundamental question: what NH signature presents a radical departure from classical physics? The solution of this problem is indispensable for exploring genuine NH quantum mechanics, but remains experimentally untouched so far. Here, we resolve this basic issue by unveiling distinct exceptional entanglement phenomena, exemplified by an entanglement transition, occurring at the exceptional point of NH interacting quantum systems. We illustrate and demonstrate such purely quantum-mechanical NH effects with a naturally dissipative light-matter system, engineered in a circuit quantum electrodynamics architecture. Our results lay the foundation for studies of genuinely quantum-mechanical NH physics, signified by exceptional-point-enabled entanglement behaviors.