Composite adsorbent comprised of curdlan (CURD) and sodium carboxymethylcellulose (CMC) were fabricated through a single-step heating process, targeting the removal of methylene blue (MB) from wastewater. The CURD/CMC composite adsorbents had a honeycomb porous structure. The integration of CMC not only increased the storage modulus of the CURD/CMC composite hydrogels but also affected the thermal stability and swelling behavior of the composite adsorbents in different pH solutions. Specifically, the addition of 1.2 % CMC increased the peak temperature (184.73 °C) of CURD/CMC composite adsorbent melting by 5.99 °C compared to CURD adsorbent. The addition of CMC improved the swelling ratio of the composite adsorbent at pH 3,7, and 12 with swelling ratio up to 918.07 %. The synergistic interaction between CURD and CMC led to an enhanced adsorption capacity of the aerogel for MB, achieving a maximum adsorption capability of 385.85 mg/g. Adsorption isotherm assessments further demonstrated that the Langmuir isotherm model well fitted the adsorption data of the composite adsorbent on MB. Collectively, these findings underscore the potential of the developed biodegradable adsorbents as promising adsorbents for efficiently eliminating organic dyes from water.
Keywords: Adsorption; Curdlan; Methylene blue; Sodium carboxymethylcellulose; Water treatment.
Copyright © 2023 Elsevier Ltd. All rights reserved.