Background: Intestinal failure associated liver disease (IFALD)-cholestasis is a common complication of long-term parenteral nutrition (PN) in patients with intestinal failure (IF). The lack of effective early identification indicators often results in poor clinical outcomes. The objective of this study was to evaluate the predictive value of serum FGF19 and liver stiffness in IFALD-cholestasis.
Methods: Eligible adults diagnosed with IF were identified from Jinling Hospital in China. Diagnostic criteria for IFALD-cholestasis: total bilirubin >1 mg/dL and conjugated bilirubin >0.3 mg/dL for ≥6 months. Fasting blood specimens were prospectively collected and serum FGF19 concentrations were determined using ELISA and liver stiffness was measured by Two-dimensional shear wave elastography. Binary logistic regression analysis identified predictors of IFALD-cholestasis. Receiver operating characteristic (ROC) curves and areas under the ROC curves (AUROC) were used to evaluate the accuracy of serum FGF19 and liver stiffness in identifying IFALD-cholestasis.
Results: Of 203 study patients with IF, 70 (34.5%) were diagnosed with IFALD-cholestasis. The serum FGF19 levels in those with IFALD-cholestasis were significantly decreased compared with those in patients without, and liver stiffness was significantly increased (p < 0.001). Multivariate logistic regression analyses suggested that intestinal discontinuity, dependence on PN, liver stiffness >6.5 kPa, and serum FGF19 ≤107 pg/mL were independent risk factors for IFALD-cholestasis. The AUROC for serum FGF19 and liver stiffness, which indicate the occurrence of IFALD-cholestasis, were 0.810 and 0.714, respectively. Serum FGF19 had a superior predictive performance than liver stiffness (p < 0.05).
Conclusion: Both low circulating serum FGF19 concentration and increased liver stiffness are excellent predictors of IFALD-cholestasis, but serum FGF19 is superior to increased liver stiffness in predicting IFALD-cholestasis.
Keywords: Cholestasis; Intestinal failure; Intestinal failure associated liver disease; Liver stiffness; Serum FGF19.
Copyright © 2023 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.