Minimalist Nanovaccine with Optimized Amphiphilic Copolymers for Cancer Immunotherapy

ACS Nano. 2024 Jan 30;18(4):3349-3361. doi: 10.1021/acsnano.3c10174. Epub 2024 Jan 17.

Abstract

Cancer vaccines with the ability to elicit tumor-specific immune responses have attracted significant interest in cancer immunotherapy. A key challenge for effective cancer vaccines is the spatiotemporal codelivery of antigens and adjuvants. Herein, we synthesized a copolymer library containing nine poly(ethylene glycol) methyl ether methacrylate-co-butyl methacrylate-co-2-(azepan-1-yl)ethyl methacrylate (PEGMA-co-BMA-co-C7AMA) graft copolymers with designed proportions of different components to regulate their properties. Among these polymers, C-25, with a C7AMA:BMA ratio at 1.5:1 and PEG wt % of 25%, was screened as the most effective nanovaccine carrier with enhanced ability to induce mouse bone marrow-derived dendritic cell (BMDC) maturation. Additionally, RNA-sequencing (RNA-Seq) analysis revealed that C-25 could activate dendritic cells (DCs) through multisignaling pathways to trigger potent immune effects. Then, the screened C-25 was used to encapsulate the model peptide antigen, OVA257-280, to form nanovaccine C-25/OVA257-280. It was found that the C-25/OVA257-280 nanovaccine could effectively facilitate DC maturation and antigen cross-presentation without any other additional adjuvant and exhibited excellent prophylactic efficacy in the B16F10-OVA tumor model. Moreover, in combination with antiprogrammed cell death protein-ligand 1 (anti-PD-L1), the C-25/OVA257-280 nanovaccine could significantly delay the growth of pre-existing tumors. Therefore, this work developed a minimalist nanovaccine with a simple formulation and high efficiency in activating tumor-specific immune responses, showing great potential for further application in cancer immunotherapy.

Keywords: Cancer vaccine; Copolymer library; Immune checkpoint blockade; Immunotherapy; Minimalist nanovaccine.

MeSH terms

  • Animals
  • Antigens / chemistry
  • Cancer Vaccines*
  • Dendritic Cells
  • Immunotherapy
  • Methacrylates
  • Mice
  • Mice, Inbred C57BL
  • Nanoparticles* / chemistry
  • Nanovaccines
  • Neoplasms* / pathology
  • Polymers

Substances

  • Cancer Vaccines
  • Nanovaccines
  • Antigens
  • Polymers
  • Methacrylates