Jacalin, the jackfruit seed lectin, exhibits high specificity for the tumor-specific T-antigen and is used in various biomedical and biotechnological applications. Here, we report biophysical studies on the thermal unfolding of jacalin and the effect of pH and temperature on its secondary structure. Differential scanning calorimetric (DSC) studies revealed that native jacalin unfolds at ∼60 °C and that carbohydrate binding stabilizes the protein structure. Circular dichroism spectroscopic studies indicated that the secondary structure of jacalin remains mostly unaffected over pH 2.0-9.0, whereas considerable changes were observed in the tertiary structure. DSC experiments demonstrated that jacalin exhibits two overlapping transitions between pH 2 and 5, which could be attributed to dissociation of the tetrameric protein into subunits and their unfolding. Interestingly, only one transition between pH 6 and 9 was observed, suggesting that the subunit dissociation and unfolding occur simultaneously. While quenching of the protein intrinsic fluorescence by acrylamide increased significantly upon carbohydrate binding, quenching by succinimide is essentially unaffected. We attribute this difference to increased exposure of Trp-123 in the α-chain as it is involved in carbohydrate binding. Both acrylamide and succinimide gave biphasic Stern-Volmer plots, consistent with differential accessibility of the two tryptophan residues of jacalin to them.
Keywords: Circular dichroism; Differential scanning calorimetry; Fluorescence quenching; Thermal denaturation; Thomsen-Freidenreich antigen; Time-resolved fluorescence.
Copyright © 2024 Elsevier B.V. All rights reserved.