Autism spectrum disorder (ASD) is a complex neurodevelopmental condition mainly characterized by social impairments and repetitive behaviors. Among these core symptoms, a notable aspect of ASD is the presence of emotional complexities, including high rates of anxiety disorders. The inherent heterogeneity of ASD poses a unique challenge in understanding its etiological origins, yet the utilization of diverse animal models replicating ASD traits has enabled researchers to dissect the intricate relationship between autism and atypical emotional processing. In this review, we delve into the general findings about the neural circuits underpinning one of the most extensively researched and evolutionarily conserved emotional states: fear and anxiety. Additionally, we explore how distinct ASD animal models exhibit various anxiety phenotypes, making them a crucial tool for dissecting ASD's multifaceted nature. Overall, to a proper display of fear response, it is crucial to properly process and integrate sensorial and visceral cues to the fear-induced stimuli. ASD individuals exhibit altered sensory processing, possibly contributing to the emergence of atypical phobias, a prevailing anxiety disorder manifested in this population. Moreover, these individuals display distinctive alterations in a pivotal fear and anxiety processing hub, the amygdala. By examining the neurobiological mechanisms underlying fear and anxiety regulation, we can gain insights into the factors contributing to the distinctive emotional profile observed in individuals with ASD. Such insights hold the potential to pave the way for more targeted interventions and therapies that address the emotional challenges faced by individuals within the autism spectrum.
Keywords: anxiety; autism spectrum disorder; fear; interoception; threat processing.
© 2024 Federation of European Biochemical Societies.