A single-cell transposable element atlas of human cell identity

bioRxiv [Preprint]. 2023 Dec 28:2023.12.28.573568. doi: 10.1101/2023.12.28.573568.

Abstract

Single cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex biological systems. However, most sequencing studies overlook the contribution of transposable element (TE) expression to the transcriptome. In both scRNA-seq and bulk tissue RNA sequencing (RNA-seq), quantification of TE expression is challenging due to repetitive sequence content and poorly characterized TE gene models. Here, we developed a tool and analysis pipeline for Single cell Transposable Element Locus Level Analysis of scRNA Sequencing (Stellarscope) that reassigns multi-mapped reads to specific genomic loci using an expectation-maximization algorithm. Using Stellarscope, we built an atlas of TE expression in human PBMCs. We found that locus-specific TEs delineate cell types and define new cell subsets not identified by standard mRNA expression profiles. Altogether, this study provides comprehensive insights into the influence of transposable elements in human biology.

Publication types

  • Preprint