SARS-CoV-2 and its Multifaceted Impact on Bone Health: Mechanisms and Clinical Evidence

Curr Osteoporos Rep. 2024 Feb;22(1):135-145. doi: 10.1007/s11914-023-00843-1. Epub 2024 Jan 18.

Abstract

Purpose of review: SARS-CoV-2 infection, the culprit of the COVID-19 pandemic, has been associated with significant long-term effects on various organ systems, including bone health. This review explores the current understanding of the impacts of SARS-CoV-2 infection on bone health and its potential long-term consequences.

Recent findings: As part of the post-acute sequelae of SARS-CoV-2 infection, bone health changes are affected by COVID-19 both directly and indirectly, with multiple potential mechanisms and risk factors involved. In vitro and preclinical studies suggest that SARS-CoV-2 may directly infect bone marrow cells, leading to alterations in bone structure and osteoclast numbers. The virus can also trigger a robust inflammatory response, often referred to as a "cytokine storm", which can stimulate osteoclast activity and contribute to bone loss. Clinical evidence suggests that SARS-CoV-2 may lead to hypocalcemia, altered bone turnover markers, and a high prevalence of vertebral fractures. Furthermore, disease severity has been correlated with a decrease in bone mineral density. Indirect effects of SARS-CoV-2 on bone health, mediated through muscle weakness, mechanical unloading, nutritional deficiencies, and corticosteroid use, also contribute to the long-term consequences. The interplay of concurrent conditions such as diabetes, obesity, and kidney dysfunction with SARS-CoV-2 infection further complicates the disease's impact on bone health. SARS-CoV-2 infection directly and indirectly affects bone health, leading to potential long-term consequences. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.

Keywords: AI; Artificial intelligence; Bone; COVID-19; ChatGPT; Muscle; SARS-CoV-2.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence
  • Bone Density
  • COVID-19*
  • Humans
  • Pandemics
  • Post-Acute COVID-19 Syndrome
  • SARS-CoV-2*