Clathrate hydrates reserved in the seabed are often dispersed in the pores of coarse-grained sediments; hence, their formation typically occurs under nanoconfinement. Herein, we show the first molecular dynamics (MD) simulation evidence of the spontaneous formation of two-dimensional (2D) clathrate hydrates on crystal surfaces without conventional nanoconfinement. The kinetic process of 2D clathrate formation is illustrated via simulated single-molecule deposition. 2D amorphous patterns are observed on various superhydrophilic face-centered cubic surfaces. Notably, the formation of 2D amorphous clathrate can occur over a wide range of temperatures, even at room temperature. The strong water-surface interaction, the characteristic properties of guest-gas molecules, and the underlying surface structure dictate the formation of 2D amorphous clathrates. Semiquantitative phase diagrams of 2D clathrates are constructed where representative patterns of 2D clathrates for characteristic gas molecules on prototypical Pd(111) and Pt(111) surfaces are confirmed by independent MD simulations. A tunable pattern of 2D amorphous clathrates is demonstrated by changing the lattice strain of the underlying substrate. Moreover, ab initio MD simulations confirm the stability of 2D amorphous clathrate. The underlining physical mechanism for 2D clathrate formation on superhydrophilic surfaces is elucidated, which offers deeper insight into the crucial role of water-surface interaction.