Defect engineered N-S codoped TiO2 nanoparticles for photocatalytic and optical limiting applications: Experimental and DFT insights

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 5:310:123846. doi: 10.1016/j.saa.2024.123846. Epub 2024 Jan 11.

Abstract

N-S codoped TiO2 nanoparticles (NPs) were synthesized using a sol-gel cum hydrothermal approach, with ammonium sulfate as the nitrogen and sulfur source compound. The calcination temperature was varied from 500 to 700 °C. The pristine samples exhibited a mixed phase of anatase and brookite, while the doped samples exhibited only the anatase phase, as confirmed by X-ray diffraction (XRD) analysis. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of N-H vibrations and S-O bidentate complexation with Ti4+ ions. Electron paramagnetic resonance (EPR) revealed the presence of Ti3+ signals, confirming the creation of oxygen defects in the doped samples. The absorption and emission properties of the samples were investigated using ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. Vibrating sample magnetometry (VSM) analysis confirms the room-temperature ferromagnetic behavior of the N-S doped TiO2, which was attributed to the presence of oxygen vacancies, as evidenced by the EPR and PL results. The N-S doped TiO2 samples demonstrated superior photocatalytic degradation of Rhodamine B (RhB), Methylene Blue (MB), and Congo Red (CR) dyes under visible light illumination compared to the pristine TiO2. This enhanced performance was attributed to the presence of N and S dopants in TiO2, which create new energy levels within the band structure of TiO2, allowing for efficient absorption of visible light and subsequent generation of reactive species for dye degradation. N-S doping modifies the electronic structure of TiO2, enhancing two-photon absorption (TPA). This increased TPA efficiency suggests promising applications in optical devices, such as laser protection systems and optical limiters. Density Functional Theory (DFT) investigation also confirms that the presence of oxygen vacancies generates energy states below the conduction band. This, in turn, benefits the absorption of more visible light during photocatalytic activities and leads to a notable nonlinear absorption in optical limiting. Overall, the N-S doping strategy significantly improves the photocatalytic and optical limiting performance of TiO2 NPs, making them promising candidates for a wide range of applications.

Keywords: EPR; Optical limiting; Oxygen vacancy; Photocatalysis; Room temperature ferromagnetism; TiO(2).