Step-by-step guide for electrochemical generation of highly oxidizing reactive species on BDD for beginners

Front Chem. 2024 Jan 4:11:1298630. doi: 10.3389/fchem.2023.1298630. eCollection 2023.

Abstract

Selecting the ideal anodic potential conditions and corresponding limiting current density to generate reactive oxygen species, especially the hydroxyl radical (OH), becomes a major challenge when venturing into advanced electrochemical oxidation processes. In this work, a step-by-step guide for the electrochemical generation of OH on boron-doped diamond (BDD) for beginners is shown, in which the following steps are discussed: i) BDD activation (assuming it is new), ii) the electrochemical response of BDD (in electrolyte and ferri/ferro-cyanide), iii) Tafel plots using sampled current voltammetry to evaluate the overpotential region where OH is mainly generated, iv) a study of radical entrapment in the overpotential region where OH generation is predominant according to the Tafel plots, and v) finally, the previously found ideal conditions are applied in the electrochemical degradation of amoxicillin, and the instantaneous current efficiency and relative cost of the process are reported.

Keywords: Tafel plot; amoxicillin degradation; boron-doped diamond; electrochemical oxidation; highly oxidizing reactive species; sampled current voltammetry.

Grants and funding

The authors declare financial support was received for the research, authorship, and/or publication of this article. This work was funded by the Pontificia Universidad Católica del Ecuador through the project: Degradation of Microplastics by Photoelectrocatalysis Using a Titanium Dioxide-Modified Boron-Doped Diamond Photoanode (TiO2/BDD). Code: 030-UIO-2023.