Polydopamine-Functionalized Strontium Alginate/Hydroxyapatite Composite Microhydrogel Loaded with Vascular Endothelial Growth Factor Promotes Bone Formation and Angiogenesis

ACS Appl Mater Interfaces. 2024 Jan 31;16(4):4462-4477. doi: 10.1021/acsami.3c16822. Epub 2024 Jan 19.

Abstract

Critical-size bone defects are a common and intractable clinical problem that typically requires filling in with surgical implants to facilitate bone regeneration. Considering the limitations of autologous bone and allogeneic bone in clinical applications, such as secondary damage or immunogenicity, injectable microhydrogels with osteogenic and angiogenic effects have received considerable attention. Herein, polydopamine (PDA)-functionalized strontium alginate/nanohydroxyapatite (Sr-Alg/nHA) composite microhydrogels loaded with vascular endothelial growth factor (VEGF) were prepared using microfluidic technology. This composite microhydrogel released strontium ions stably for at least 42 days to promote bone formation. The PDA coating can release VEGF in a controlled manner, effectively promote angiogenesis around bone defects, and provide nutritional support for new bone formation. In in vitro experiments, the composite microhydrogels had good biocompatibility. The PDA coating greatly improves cell adhesion on the composite microhydrogel and provides good controlled release of VEGF. Therefore, this composite microhydrogel effectively promotes osteogenic differentiation and vascularization. In in vivo experiments, composite microhydrogels were injected into critical-size bone defects in the skull of rats, and they were shown by microcomputed tomography and tissue sections to be effective in promoting bone regeneration. These findings demonstrated that this novel microhydrogel effectively promotes bone formation and angiogenesis at the site of bone defects.

Keywords: angiogenesis; bone regeneration; microfluidics; multifunctional composite microhydrogel; strontium ion; vascular endothelial growth factor.

MeSH terms

  • Alginates / pharmacology
  • Angiogenesis
  • Animals
  • Bone Regeneration
  • Hydroxyapatites / pharmacology
  • Indoles*
  • Osteogenesis*
  • Polymers*
  • Rats
  • Skull
  • Strontium / pharmacology
  • Vascular Endothelial Growth Factor A* / pharmacology
  • X-Ray Microtomography

Substances

  • Vascular Endothelial Growth Factor A
  • polydopamine
  • Alginates
  • Hydroxyapatites
  • Strontium
  • Indoles
  • Polymers