Circ_0023990 Promotes the Proliferation, Invasion, and Glycolysis of Esophageal Squamous Cell Carcinoma Cells Via Targeting miR-6884-5p/PAK1 Axis

Biochem Genet. 2024 Oct;62(5):3876-3892. doi: 10.1007/s10528-024-10674-z. Epub 2024 Jan 19.

Abstract

Circular RNAs are emerging players in human cancers, including esophageal squamous cell carcinoma (ESCC). Herein, we assessed the expression level of circ_0023990 and explored the molecular mechanisms of circ_0023990 in ESCC. circ_0023990, miR-6884-5p, and PAK1 expressions in ESCC tissues and cells were detected by quantitative real-time polymerase chain reaction and western blot. ESCC cells were transfected with different constructs to alter the expression of circ_0023990, miR-6884-5p, and PAK1. The effect of circ_0023990 on the proliferation, invasion, and glycolysis of ESCC cells was observed. The interaction between circ_0023990 and miR-6884-5p and between miR-6884-5p and PAK1 were explored. A mouse model of ESCC was established to study the in vivo effect of circ_0023990 knockdown on tumor formation.The expression levels of circ_0023990 was upregulated in ESCC tissues and cells. Inhibiting circ_0023990 suppressed the proliferation, invasion, and glycolysis of ESCC cells. circ_0023990 might target miR-6884-5p and consequently modulate the expression and activity of PAK1. Knockdown of circ_0023990 led to significantly reduced tumor volume and weight in mice with ESCC.These findings overall suggest an oncogenic role of circ_0023990 in ESCC. Future research is warranted to confirm the expression pattern and clinical significance of circ_0023990 in ESCC.

Keywords: Circ_0023990; Circular RNAs; Esophageal Squamous cell Carcinoma; Esophageal cancer; PAK1; miR-6884-5p.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Proliferation*
  • Esophageal Neoplasms* / genetics
  • Esophageal Neoplasms* / metabolism
  • Esophageal Neoplasms* / pathology
  • Esophageal Squamous Cell Carcinoma* / genetics
  • Esophageal Squamous Cell Carcinoma* / metabolism
  • Esophageal Squamous Cell Carcinoma* / pathology
  • Female
  • Gene Expression Regulation, Neoplastic
  • Glycolysis*
  • Humans
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Neoplasm Invasiveness*
  • RNA, Circular* / genetics
  • RNA, Circular* / metabolism
  • p21-Activated Kinases* / genetics
  • p21-Activated Kinases* / metabolism

Substances

  • p21-Activated Kinases
  • MicroRNAs
  • RNA, Circular
  • PAK1 protein, human