Sloppy model analysis identifies bifurcation parameters without normal form analysis

Phys Rev E. 2023 Dec;108(6-1):064215. doi: 10.1103/PhysRevE.108.064215.

Abstract

Bifurcation phenomena are common in multidimensional multiparameter dynamical systems. Normal form theory suggests that bifurcations are driven by relatively few combinations of parameters. Models of complex systems, however, rarely appear in normal form, and bifurcations are controlled by nonlinear combinations of the bare parameters of differential equations. Discovering reparameterizations to transform complex equations into a normal form is often very difficult, and the reparameterization may not even exist in a closed form. Here we show that information geometry and sloppy model analysis using the Fisher information matrix can be used to identify the combination of parameters that control bifurcations. By considering observations on increasingly long timescales, we find those parameters that rapidly characterize the system's topological inhomogeneities, whether the system is in normal form or not. We anticipate that this novel analytical method, which we call time-widening information geometry (TWIG), will be useful in applied network analysis.