Background: Pathophysiological conditions underlying pulmonary fibrosis remain poorly understood. Exhaled breath volatile organic compounds (VOCs) have shown promise for lung disease diagnosis and classification. In particular, carbonyls are a byproduct of oxidative stress, associated with fibrosis in the lungs. To explore the potential of exhaled carbonyl VOCs to reflect underlying pathophysiological conditions in pulmonary fibrosis, this proof-of-concept study tested the hypothesis that volatile and low abundance carbonyl compounds could be linked to diagnosis and associated disease severity.
Methods: Exhaled breath samples were collected from outpatients with a diagnosis of Idiopathic Pulmonary Fibrosis (IPF) or Connective Tissue related Interstitial Lung Disease (CTD-ILD) with stable lung function for 3 months before enrollment, as measured by pulmonary function testing (PFT) DLCO (%), FVC (%) and FEV1 (%). A novel microreactor was used to capture carbonyl compounds in the breath as direct output products. A machine learning workflow was implemented with the captured carbonyl compounds as input features for classification of diagnosis and disease severity based on PFT (DLCO and FVC normal/mild vs. moderate/severe; FEV1 normal/mild/moderate vs. moderately severe/severe).
Results: The proposed approach classified diagnosis with AUROC=0.877 ± 0.047 in the validation subsets. The AUROC was 0.820 ± 0.064, 0.898 ± 0.040, and 0.873 ± 0.051 for disease severity based on DLCO, FEV1, and FVC measurements, respectively. Eleven key carbonyl VOCs were identified with the potential to differentiate diagnosis and to classify severity.
Conclusions: Exhaled breath carbonyl compounds can be linked to pulmonary function and fibrotic ILD diagnosis, moving towards improved pathophysiological understanding of pulmonary fibrosis.
Keywords: Carbonyl compounds; Idiopathic pulmonary fibrosis; Interstitial lung disease; Machine learning; Pulmonary fibrosis; Volatile organic compounds.
Copyright © 2024 Elsevier Ltd. All rights reserved.