The mixed effect of Endocrine-Disrupting chemicals on biological age Acceleration: Unveiling the mechanism and potential intervention target

Environ Int. 2024 Feb:184:108447. doi: 10.1016/j.envint.2024.108447. Epub 2024 Jan 17.

Abstract

Introduction: Although previous studies investigated the potential adverse effects of endocrine-disrupting chemicals (EDCs) on biological age acceleration and aging-related diseases, the mixed effect of multiple types of EDCs on biological age acceleration, including its potential underlying mechanism, remains unclear.

Methods: Data from the National Health and Nutrition Examination Survey (NHANES) were used to analyze biological age measures, including Klemera-Doubal method biological age (KDM-BA), phenotypic age, and homeostatic dysregulation (HD). Weight quantile sum (WQS) regression was performed to screen biological age-related EDCs (BA-EDCs) and assess the mixed effect of BA-EDCs on biological age acceleration and aging-related disease. Targets of BA-EDCs were obtained from three databases, while heart aging-related genes were obtained from the Aging Anno database. Protein-protein interaction (PPI) network and MCODE algorithm were applied to identify potential interactions between BA-EDC targets and heart aging-related genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to identify related pathways.

Results: This cross-sectional study included 1,439 participants. A decile increase in BA-EDCs co-exposure was associated with 0.31 years and 0.17 years of KDM-BA and phenotypic age acceleration, respectively. The mixed effect of BA-EDCs was associated with an increased prevalence of atherosclerotic cardiovascular disease (ASCVD). Vitamins C and E demonstrated a significant interaction effect on the association between BA-EDCs and KDM-BA acceleration. PPI network and functional enrichment analysis indicated that the AGE-RAGE signaling pathway in diabetic complications was significantly enriched.

Conclusion: Our results showed that the co-exposure effect of BA-EDCs was associated with biological age acceleration and ASCVD, with the AGE-RAGE signaling pathway being the underlying mechanism. Vitamins C and E may also be an actionable target for preventing EDC-induced biological aging.

Keywords: AGE-RAGE signaling pathway; Biological age; Endocrine-disrupting chemical; Paraben; Phthalate.

MeSH terms

  • Aging
  • Cross-Sectional Studies
  • Endocrine Disruptors* / toxicity
  • Humans
  • Nutrition Surveys
  • Vitamins

Substances

  • Endocrine Disruptors
  • Vitamins