Microplastics as emerging contaminants in textile dyeing sludge: Their impacts on co-combustion/pyrolysis products, residual metals, and temperature dependency of emissions

J Hazard Mater. 2024 Mar 15:466:133465. doi: 10.1016/j.jhazmat.2024.133465. Epub 2024 Jan 9.

Abstract

As emerging contaminants in textile dyeing sludge (TDS), the presence and types of microplastics (MPs) inevitably influence the combustion and pyrolysis of TDS. Their effects on the co-combustion/pyrolysis emissions and residual metals of TDS remain poorly understood. This study aimed to quantify the impacts of polyethylene (PE) and polypropylene (PP) on the transports and transformations of gaseous emissions and residual metals generated during the TDS combustion and pyrolysis in the air, oxy-fuel, and nitrogen atmospheres. Thermal degradation of the MPs in TDS occurred between 242-600 °C. MPs decomposed and interacted with the organic components of TDS to the extent that they increased the release of VOCs, dominated by oxygenated VOCs and hydrocarbons under the incineration and pyrolysis conditions, respectively. The presence of PE exerted a limited impact on the concentration and chemical form of metals, while PP reduced the residual amount of most metals due to the decomposition of mineral additives. Also, PP (with CaCO3 filler) reduced the acid-extractable content of cadmium, copper, and manganese in the bottom slag or coke but increased that of chromium. This study provides actionable insights into optimizing gas emissions, energy recovery, and ash reuse, thus reinforcing the pollution control strategies for both the MPs and TDS.

Keywords: Heavy metals; Microplastics; Textile dyeing sludge; Thermochemical conversion; Volatile pollutants.