With the phase-out of amalgam and the increase in minimally invasive dentistry, there is a growing need for high-strength composite materials that can kill residual bacteria and promote tooth remineralization. This study quantifies how antibacterial polylysine (PLS) and re-mineralizing monocalcium phosphate monohydrate (MCPM) affect Streptococcus mutans biofilms and the strength of dental composites. For antibacterial studies, the MCPM-PLS filler percentages were 0-0, 8-4, 12-6, and 16-8 wt% of the composite filler phase. Composite discs were immersed in 0.1% sucrose-supplemented broth containing Streptococcus mutans (UA159) and incubated in an anaerobic chamber for 48 h. Surface biomass was determined by crystal violet (CV) staining. Growth medium pH was measured at 24 and 48 h. Biofilm bacterial viability (CFU), exo-polysaccharide (water-soluble glucan (WSG) and water-insoluble glucan (WIG)), and extracellular DNA (eDNA) were quantified. This was by serial dilution plate counting, phenol-sulfuric acid microassay, and fluorometry, respectively. The biaxial flexural strengths were determined after water immersion for 1 week, 1 month, and 1 year. The MCPM-PLS wt% were 8-4, 8-8, 16-4 and 16-8. The normalized biomass, WSG, and WIG showed a linear decline of 66%, 64%, and 55%, respectively, as the PLS level increased up to 8%. The surrounding media pH (4.6) was all similar. A decrease in bacterial numbers with the 12-6 formula and a significant reduction with 16-8 compared to the 0-0 formulation was observed. The eDNA concentrations in biofilms formed on 12-6 and 16-8 formulations were significantly less than the 0-0 control and 8-4 formulations. Doubling MCPM and PLS caused a 14 and 19% reduction in strength in 1 week, respectively. Average results were lower at 1 month and 1 year but affected less upon doubling MCPM and PLS levels. Moreover, a 4% PLS may help to reduce total biomass and glucan levels in biofilms on the above composites. Higher levels are required to reduce eDNA and provide bactericidal action, but these can decrease early strength.
Keywords: Streptococcus mutans; antibacterial; biofilm; biomass; dental composite; exo-polysaccharide; extracellular DNA.