Herein, pyrenecarboxaldehyde@graphene oxide (Pyc@GO) sheets with highly efficient electrochemiluminescence (ECL) as emitters were prepared by a noncovalent combination to develop a neoteric ECL biosensing platform for the ultrasensitive assessment of human apurinic/apyrimidinic endonuclease1 (APE1) activity. Impressively, the pyrenecarboxaldehyde (Pyc) molecules were able to form stable polar functional groups on the surface of GO sheets through the noncovalent π-π stacking mechanism to prevent intermolecular restacking and simultaneously generate Pyc@GO sheets. Compared with the tightly packed PAH nanocrystals, the Pyc@GO sheets significantly reduced internal filtering effects and diminished nonactivated emitters to enhance ECL intensity and achieve strong ECL emission. Furthermore, the APE1-activated initiators could trigger the recyclable cascade amplified system based on the synergistic cross-activation between catalytic hairpin assembly (CHA) and DNAzyme, which improved the signal amplification and transduction ability. Consequently, the developed ECL platform for the detection of APE1 activity displayed exceptional sensitivity with a low detection limit of 4.6 × 10-9 U·mL-1 ranging from 10-8 to 10-2 U·mL-1. Therefore, the proposed strategy holds great promise for the future development of sensitive and reliable biosensing platforms for the detection of various biomarkers.
Keywords: APE1; electrochemiluminescence biosensor; pyrenecarboxaldehyde@graphene oxide; signal amplification; π−π stacking.