Optical encryption shows great potential in meeting the growing demand for advanced anti-counterfeiting in the information age. The development of upconversion luminescence (UCL) materials capable of emitting different colors of light in response to different external stimuli holds great promise in this field. However, the effective realization of multicolor UCL materials usually requires complex structural designs. In this work, orthogonal UCL is achieved in crystals with a simple structure simply by introducing modulator Tm3+ ions to control the photon transition processes between different energy levels of activator Er3+ ions. The obtained crystals emit red and green UCL when excited by 980 nm and 808 nm lasers, respectively. The orthogonal excitation-emission properties of crystals are shown to be very suitable for high-level optical encryption, which is important for information security and anti-counterfeiting. This work provides an effective strategy for obtaining orthogonal UCL in simple structural materials, which will encourage researchers to further explore novel orthogonal UCL materials and their applications, and has important implications for the development of the frontier photonic upconversion fields.
Keywords: crystals; lanthanide; optical encryption; orthogonal luminescence; upconversion.
© 2024 Wiley-VCH GmbH.