The aim of this study was to measure the brain penetrance and kinetics of BIIB104, a first-in-class AMPA receptor potentiator developed for cognitive impairment associated with schizophrenia. It was recently halted in phase 2 clinical development, and there are a lack of tools to directly measure AMPA receptor engagement. To achieve this, the drug candidate was radiolabeled with carbon-11, and its brain penetrance and kinetics were measured in non-human primates via dynamic PET scans. Radiolabeling was achieved through a three-step nucleophilic [11C]cyanation reaction in one pot, resulting in the high radioactivity and radiochemical purity (>99%) of [11C]BIIB104. The study found that [11C]BIIB104 entered the non-human primate brains at 4-5% ID at peak, with a homogeneous distribution. However, a mild regional heterogeneity was observed in the thalamus. The lack of conclusive evidence for a change in regional values after BIIB104 dosing suggests that any specific binding component of BIIB104 is negligible compared to the free and non-specific components in the living brain. Overall, the study demonstrated high brain uptake with minor variability in [11C]BIIB104 distribution across various brain regions, its kinetics were consistent with those of passive diffusion, and the dominating components were the free concentration and non-specific binding. This information is valuable for understanding the potential effects and mechanisms of BIIB104 in the brain.
Keywords: AMPA; PET; bio-distribution; non-human primate; radiosynthesis.