Introduction: Lipopolysaccharide (Lps) is an essential component responsible for the virulence of gram-negative bacteria. Lps can cause damage to many organs, including the heart, kidneys, and lungs. Dexpanthenol (Dex) is an agent that exhibits anti-oxidative and anti-inflammatory effects and stimulates epithelialization. In this study, we aimed to investigate the effects of Dex on Lps-induced cardiovascular toxicity.
Methods: Rats were divided into four groups: control, Lps (5 mg/kg, intraperitoneal), Dex (500 mg/kg, intraperitoneal), and Lps + Dex. The control group received saline intraperitoneally (i.p.) once daily for three days. The Lps group received saline i.p. once daily for three days and a single dose of Lps i.p. was administered on the third day. The Dex group received Dex i.p. once daily for three days and saline on the third day. The Lps + Dex group received Dex i.p. once daily for three days and a single dose of Lps i.p. on the third day. Heart and aortic tissues were taken for biochemical, histopathological, immunohistochemical, and genetic analysis.
Results: Lps injection caused histopathological changes in both heart and aortic tissues and significantly increased total oxidant status and oxidative stress index levels. Interleukin-6, and Tumor necrosis factor-α mRNA expressions were significantly altered in heart and aorta, likely do to the anti-inflammatory and antioxidative effects of Dex. Furthermore, Dex affected Caspase-3 and Hypoxia-inducible factor 1-α staining patterns.
Conclusions: Our results show that Dex treatment has a protective effect on Lps-induced cardiac and endothelial damage in rats by reducing inflammation, oxidative stress, and apoptosis.
Keywords: Inflammation; Lps; Oxidative stress; Pantothenic acid; Sepsis.
© 2024 The Authors.