Precision medicine aims to provide more effective interventions and preventive options to patients by considering their individual risk factors and by employing available evidence. This proof of concept study presents an approach towards generating holistic virtual representations of patients, a.k.a. health digital twins. The developed virtual representations were applied in two health outcome prediction case studies for readmission and in-hospital mortality predictions. The results demonstrated the effectiveness of the virtual representations to facilitate predictive analysis in practicing precision medicine.
Keywords: Health digital twins; health outcome prediction; precision medicine.