The life cycle of influenza A viruses (IAV), and notably intracellular trafficking of the viral genome, depends on multiple interactions with the cellular cytoskeleton and endomembrane system. A limitation of the conventional cellular models used for mechanistic study and subcellular imaging of IAV infection is that they are cultured in two dimensions (2D) under non-polarizing conditions, and therefore they do not recapitulate the intracellular organization of the polarized respiratory epithelial cells naturally targeted by IAVs. To overcome this limitation, we developed an IAV-infection assay in a 3D cell culture system which allows imaging along the baso-lateral axis of polarized cells, with subcellular resolution. Here we describe a protocol to grow polarized monolayers of Caco2-TC7 cells on static Cytodex-3 microcarrier beads, infect them with IAV, and subsequently perform immunostaining and confocal imaging, or electron microscopy, on polarized IAV-infected cells. This method can be extended to other pathogens that infect human polarized epithelial cells.
Copyright: © 2024 Brault et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.