A Tandem-Affinity Purification Method for Identification of Primary Intracellular Drug-Binding Proteins

ACS Chem Biol. 2024 Feb 16;19(2):233-242. doi: 10.1021/acschembio.3c00570. Epub 2024 Jan 25.

Abstract

In the field of drug discovery, understanding how small molecule drugs interact with cellular components is crucial. Our study introduces a novel methodology to uncover primary drug targets using Tandem Affinity Purification for identification of Drug-Binding Proteins (TAP-DBP). Central to our approach is the generation of a FLAG-hemagglutinin (HA)-tagged chimeric protein featuring the FKBP12(F36V) adaptor protein and the TurboID enzyme. Conjugation of drug molecules with the FKBP12(F36V) ligand allows for the coordinated recruitment of drug-binding partners effectively enabling in-cell TurboID-mediated biotinylation. By employing a tandem affinity purification protocol based on FLAG-immunoprecipitation and streptavidin pulldown, alongside mass spectrometry analysis, TAP-DBP allows for the precise identification of drug-primary binding partners. Overall, this study introduces a systematic, unbiased method for identification of drug-protein interactions, contributing a clear understanding of target engagement and drug selectivity to advance the mode of action of a drug in cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carrier Proteins*
  • Chromatography, Affinity / methods
  • Proteins / metabolism
  • Tacrolimus Binding Protein 1A / metabolism
  • Tandem Affinity Purification* / methods

Substances

  • Carrier Proteins
  • Tacrolimus Binding Protein 1A
  • Proteins