Idiopathic pulmonary fibrosis is a progressive and incurable lung disease characterized by collagen deposition, alveolar inflammation, fibroblast proliferation, and the destruction of lung tissue structures. It is a rare yet severe condition with a high mortality rate, typically leading to death within 3-5 years of diagnosis. The clinical presentation of idiopathic pulmonary fibrosis (IPF) involves a gradual and substantial loss of lung function, ultimately resulting in respiratory failure. Despite more than half a century of intensive research, the origin of IPF remains a mystery. Despite its unknown etiology, several genetic and non-genetic factors have been linked to IPF. Recent significant advancements have been made in the field of IPF diagnosis and treatment. Two oral small-molecule drugs, pirfenidone and nintedanib, have recently gained approval for the treatment of IPF. Pirfenidone exhibits antifibrotic, antioxidant, and anti-inflammatory properties, while nintedanib is a tyrosine kinase inhibitor with selectivity for vascular endothelial growth factor (VEGF) receptors, prostaglandin F (PGF) receptors, and fibroblast growth factor (FGF) receptors. Both of these compounds are capable of slowing down the progression of the disease with an acceptable safety profile. This review provides a brief introduction, historical background, epidemiological insights, and an exploration of various environmental risk factors that may influence the lung microenvironment and contribute to the advancement of IPF. The review also delves into the diagnosis, signaling pathways, and ongoing clinical trials worldwide. A thorough review of the literature was conducted using PubMed and Google Scholar to gather information on various aspects of IPF. Numerous potential drugs are currently under investigation in clinical trials, and the completion of this process is crucial to the ultimate goal of finding a cure for IPF patients. The investigation of the role of genes, surfactant proteins, infectious agents, biomarkers, and epigenetic changes holds the promise of offering earlier and more accurate understanding and diagnosis of IPF. This information could be instrumental in the development of new therapeutic approaches for treating IPF and is expected to be of great interest to researchers.
Keywords: antifibrotic drugs; biomarkers; clinical trials; environmental risk factors; history; idiopathic pulmonary fibrosis; management.