Hypergolic ionic liquids: to be or not to be?

Chem Sci. 2023 Dec 18;15(4):1480-1487. doi: 10.1039/d3sc05096c. eCollection 2024 Jan 24.

Abstract

Hypergolic ionic liquids (HIL) - ionic liquids which ignite spontaneously upon contact with an oxidizer - emerged as green space propellants. Exploiting the previously marked hypergolic [EMIM][CBH] - WFNA (1-ethyl-3-methylimidazolium cyanoborohydride - white fuming nitric acid) system as a benchmark, through the utilization of a novel chirped-pulse droplet-merging technique in an ultrasonic levitation environment and electronic structure calculations, this work deeply questions the hypergolicity of the [EMIM][CBH]-WFNA system. Molecular oxygen is critically required for the [EMIM][CBH]-WFNA system to ignite spontaneously. State-of-the-art electronic structure calculations identified the resonantly stabilized N-boryl-N-oxo-formamide [(H3B-N(O)-CHO)-; BOFA] radical anion as the key intermediate in driving the oxidation chemistry upon reaction with molecular oxygen of the ionic liquid. These findings challenge conventional wisdom of 'well-established' test protocols as indicators of the hypergolicity of ionic liquids thus necessitating truly oxygen-free experimental conditions to define the ignition delay upon mixing of the ionic liquid and the oxidizer and hence designating an ionic liquid as truly hypergolic at the molecular level.