Animals often mimic the behaviours or signals of conspecifics of the opposite sex while courting. We explored the potential functions of a novel female-like signal type in the courtship displays of male Enchenopa treehoppers. In these plant-feeding insects, males produce plant-borne vibrational advertisement signals, to which females respond with their own duetting signals. Males also produce a signal type that resembles the female duetting responses. We experimentally tested whether this signal modifies the behaviour of receivers. First, we tested whether the female-like signal would increase the likelihood of a female response. However, females were as likely to respond to playbacks with or without them. Second, we tested whether the female-like signal would inhibit competing males, but males were as likely to produce displays after playbacks with or without them. Hence, we found no evidence that this signal has an adaptive function, despite its presence in the courtship display, where sexual selection affects signal features. Given these findings, we also explored whether the behavioural and morphological factors of the males were associated with the production of the female-like signal. Males that produced this signal had higher signalling effort (longer and more frequent signals) than males that did not produce it, despite being in worse body condition. Lastly, most males were consistent over time in producing the female-like signal or not. These findings suggest that condition-dependent or motivational factors explain the presence of the female-like signal. Alternatively, this signal might not bear an adaptive function, and it could be a way for males to warm up or practice signalling, or even be a by-product of how signals are transmitted through the plant. We suggest further work that might explain our puzzling finding that a signal in the reproductive context might not have an adaptive function.
Keywords: Enchenopa binotata; biotremology; repeatability; seismic signal; sexual mimicry; substrate-borne vibrations.
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Evolutionary Biology. All rights reserved. For permissions, please e-mail: [email protected].