Hysteresis and Its Correlation to Ionic Defects in Perovskite Solar Cells

J Phys Chem Lett. 2024 Feb 8;15(5):1363-1372. doi: 10.1021/acs.jpclett.3c03146. Epub 2024 Jan 29.

Abstract

Ion migration has been reported to be one of the main reasons for hysteresis in the current-voltage (J-V) characteristics of perovskite solar cells. We investigate the interplay between ionic conduction and hysteresis types by studying Cs0.05(FA0.83MA0.17)0.95Pb(I0.9Br0.1)3 triple-cation perovskite solar cells through a combination of impedance spectroscopy (IS) and sweep-rate-dependent J-V curves. By comparing polycrystalline devices to single-crystal MAPbI3 devices, we separate two defects, β and γ, both originating from long-range ionic conduction in the bulk. Defect β is associated with a dielectric relaxation, while the migration of γ is influenced by the perovskite/hole transport layer interface. These conduction types are the causes of different types of hysteresis in J-V curves. The accumulation of ionic defects at the transport layer is the dominant cause for observing tunnel-diode-like characteristics in the J-V curves. By comparing devices with interface modifications at the electron and hole transport layers, we discuss the species and polarity of involved defects.