AAV-Mediated Delivery of Plakophilin-2a Arrests Progression of Arrhythmogenic Right Ventricular Cardiomyopathy in Murine Hearts: Preclinical Evidence Supporting Gene Therapy in Humans

Circ Genom Precis Med. 2024 Feb;17(1):e004305. doi: 10.1161/CIRCGEN.123.004305. Epub 2024 Jan 30.

Abstract

Background: Pathogenic variants in PKP2 (plakophilin-2) cause arrhythmogenic right ventricular cardiomyopathy, a disease characterized by life-threatening arrhythmias and progressive cardiomyopathy leading to heart failure. No effective medical therapy is available to prevent or arrest the disease. We tested the hypothesis that adeno-associated virus vector-mediated delivery of the human PKP2 gene to an adult mammalian heart deficient in PKP2 can arrest disease progression and significantly prolong survival.

Methods: Experiments were performed using a PKP2-cKO (cardiac-specific, tamoxifen-activated PKP2 knockout murine model). The potential therapeutic, adeno-associated virus vector of serotype rh.74 (AAVrh.74)-PKP2a (PKP2 variant A; RP-A601) is a recombinant AAVrh.74 gene therapy viral vector encoding the human PKP2 variant A. AAVrh.74-PKP2a was delivered to adult mice by a single tail vein injection either before or after tamoxifen-activated PKP2-cKO. PKP2 expression was confirmed by molecular and histopathologic analyses. Cardiac function and disease progression were monitored by survival analyses, echocardiography, and electrocardiography.

Results: Consistent with prior findings, loss of PKP2 expression caused 100% mortality within 50 days after tamoxifen injection. In contrast, AAVrh.74-PKP2a-mediated PKP2a expression resulted in 100% survival for >5 months (at study termination). Echocardiographic analysis revealed that AAVrh.74-PKP2a prevented right ventricle dilation, arrested left ventricle functional decline, and mitigated arrhythmia burden. Molecular and histological analyses showed AAVrh.74-PKP2a-mediated transgene mRNA and protein expression and appropriate PKP2 localization at the cardiomyocyte intercalated disc. Importantly, the therapeutic benefit was shown in mice receiving AAVrh.74-PKP2a after disease onset.

Conclusions: These preclinical data demonstrate the potential for AAVrh.74-PKP2a (RP-A601) as a therapeutic for PKP2-related arrhythmogenic right ventricular cardiomyopathy in both early and more advanced stages of the disease.

Keywords: arrhythmogenic right ventricular cardiomyopathy; cardiomyopathies; death, sudden; genetic therapy; plakophilins.

MeSH terms

  • Adult
  • Animals
  • Arrhythmias, Cardiac / genetics
  • Arrhythmias, Cardiac / metabolism
  • Arrhythmias, Cardiac / therapy
  • Arrhythmogenic Right Ventricular Dysplasia* / genetics
  • Arrhythmogenic Right Ventricular Dysplasia* / metabolism
  • Arrhythmogenic Right Ventricular Dysplasia* / therapy
  • Disease Progression
  • Humans
  • Mammals / metabolism
  • Mice
  • Myocytes, Cardiac / metabolism
  • Plakophilins / genetics
  • Tamoxifen / metabolism

Substances

  • Plakophilins
  • Tamoxifen