In the last decade, numerous initiatives have emerged worldwide to reduce the use of animals in drug development, including more recently the introduction of Virtual Control Groups (VCGs) concept for nonclinical toxicity studies. Although replacement of concurrent controls (CCs) by virtual controls (VCs) represents an exciting opportunity, there are associated challenges that will be discussed in this paper with a more specific focus on anatomic pathology. Coordinated efforts will be needed from toxicologists, clinical and anatomic pathologists, and regulators to support approaches that will facilitate a staggered implementation of VCGs in nonclinical toxicity studies. Notably, the authors believe that a validated database for VC animals will need to include histopathology (digital) slides for microscopic assessment. Ultimately, the most important step lies in the validation of the concept by performing VCG and the full control group in parallel for studies of varying duration over a reasonable timespan to confirm there are no differences in outcomes (dual study design). The authors also discuss a hybrid approach, whereby control groups comprised both concurrent and VCs to demonstrate proof-of-concept. Once confidence is established by sponsors and regulators, VCs have the potential to replace some or all CC animals.
Keywords: concurrent control; digital pathology; histopathology; toxicology study; virtual control; whole slide imaging.