In order to improve the mechanical and water electrolysis performance of anion exchange membranes (AEMs), we adjusted the ratio between p-terphenyl and m-terphenyl to balance the backbone conformation, which gives it a better suitability for a better combination with cations. The results showed that poly(m-terphenyl-co-p-terphenyl)-based AEMs have excellent mechanical properties. Among them, the m-p-TP-40-BOP-ASU membrane has the highest tensile strength and elongation at break (75.72 MPa and 16.07%). The ionic conductivity reaches 137.14 mS cm-1 at 80 °C owing to the fact that efficient ion-conducting channels are formed by well-balanced molecular structures. The current density of the m-p-TP-40-BOP-ASU membrane reached 1.96 A cm-2 (1 M KOH aq, 2.0 V and 60 °C). After testing for 112 h under a current density of 500 mA cm-2, the voltage increased by 102 mV compared to the initial electrolysis voltage. All results have shown that m-p-TP-x-BOP-ASU has excellent electrolysis performance and electrochemical durability and has a promising application prospect in AEM water electrolyzers.
Keywords: anion exchange membrane; free volume; poly(aryl piperidinium); spirocyclic cations; twisted structure; water electrolysis.