Colored light has important implications for human health and well-being, as well as for the aesthetics and function of various environments. In addition to its effects on visual function, colored light has significant effects on cognitive performance, behavior and systemic physiology. The aim of the current study was to comprehensively investigate how colored light exposure (CLE) combined with a cognitive task (2-back) affects performance, cerebral hemodynamics, oxygenation, and systemic physiology as assessed by systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). 36 healthy subjects (22 female, 14 male, age 26.3 ± 5.7 years) were measured twice on two different days. They were exposed to the sequence of blue and red light or vice versa in a randomized crossover design. During the CLE, the subjects were asked to perform a 2-back task. The 2-back task performance was correlated with changes in the concentration of oxygenated hemoglobin in the prefrontal cortex (red: r = -0.37, p = 0.001; blue: r = -0.33, p = 0.004) and the high-frequency component of the heart rate variability (red: r = 0.35, p = 0.003; blue: r = 0.25, p = 0.04). These changes were independent of the CLE. Sequence-dependent effects were observed for fNIRS signals at the visual cortex (VC) and for electrodermal activity (EDA). While both colors caused relatively similar changes in the VC and EDA at the position of the first exposure, blue and red light caused greater changes in the VC and EDA, respectively, in the second exposure. There was no significant difference in the subjects' 2-back task performance between the CLE (p = 0.46). The results of this study provide new insights into how human physiology and behavior respond to colored light exposure. Our findings are important for understanding the impact of colored light in our daily lives and its potential applications in a variety of settings, including education, the workplace and healthcare.
Keywords: 2-back task; Cerebral hemodynamics; Colored light exposure; SPA-fNIRS; Systemic physiology; Systemic physiology augmented functional near-infrared spectroscopy; Task performance.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.