A series of SEBS-C6-PIP-yPTP (y = 0-15%) AEMs with good mechanical and chemical stability were prepared by combining the strong rigidity of p-triphenyl, good toughness of SEBS, and excellent stability of PIP cations. After the introduction of a p-triphenyl polymer into the main chain, a clear hydrophilic-hydrophobic phase separation structure was constructed within the membrane, forming a continuous and interconnected ion transport channel to improve ion transport efficiency. Moreover, the molecular chains of the cross-linked AEMs change from chain-like to network-like, and the tighter binding between each molecule increases the tensile strength. The special structure of the six-membered ring makes PIP have a significant constraint effect; when nucleophilic substitution and Hoffman elimination occur at the α and β positions, the required transition state potential energy increases, making the reaction difficult to occur and improving the alkaline stability of the polymer membrane. The SEBS-C6-PIP-15%PTP membrane has the best mechanical properties (Ts = 38.79 MPa, Eb = 183.09% at 80 °C, 100% RH), the highest ion conductivity (102.02 mS. cm-1 at 80 °C), and the best alkaline stability (6.23% degradation at 80 °C in a 2 M NaOH solution for 1400 h). It can be seen that organic-organic covalent cross-linking is an effective means to improve the comprehensive performance of AEMs.
Keywords: alkaline stability; comprehensive performance; covalent cross-linking; p-triphenyl; poly(styrene-b-(ethylene-co-butylene)-b-styrene); remote grafting.