Portable Raman spectroscopy coupled with PLSR analysis for monitoring and predicting of the quality of fresh-cut Chinese yam at different storage temperatures

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 5:310:123956. doi: 10.1016/j.saa.2024.123956. Epub 2024 Jan 26.

Abstract

Portable Raman spectroscopy coupled with partial least squares regression (PLSR) model was performed for monitoring and predicting four quality indicators, moisture content, water activity, polysaccharide content and microbial content of the fresh-cut Chinese yam at different storage temperatures. The variations in the four key indicators were first depicted through a spider web diagram as the storage temperature changed. More importantly, the four key indicators can be accurately monitored and predicted through optimized PLSR models combining with Raman spectroscopy. Among all of the PLSR models for the four indicators, the regression model for moisture content was relatively the best. In addition, storage temperature played a significant role on the model performance of PLSR. The model performance for all indicators at room temperature and high temperature was better than the corresponding PLSR models at refrigeration and freezing conditions. Especially at 25 ℃, the R2 in the calibration set basically reached 0.9. These observations indicated that portable Raman spectroscopy, a simple and easy-to-use detection technique, can monitor and predict the multiple quality indicators of fresh-cut Chinese yam combined with effectively PLSR model, which would be conducive to their applications in food industry.

Keywords: Fresh-cut Chinese yam; Monitor; PLSR; Portable Raman spectroscopy; Predict.

MeSH terms

  • Dioscorea*
  • Least-Squares Analysis
  • Spectrum Analysis, Raman
  • Temperature