Background and objective: Mastectomy is a primary treatment for breast cancer patients, and both autologous and implant-based reconstructive techniques have shown excellent results. In recent years, advancements in bioengineering have led to a proliferation of innovative approaches to breast reconstruction. This article comprehensively explores the promising perspectives offered by bioengineering and tissue engineering in the field of breast reconstruction.
Methods: A literature review was conducted between April and June 2023 on PubMed and Google Scholar Databases. All English and French articles related to bioengineering applied to the field of breast reconstruction were included. We used the Evidence-Based Veterinary Medicine Association (EBVM) Toolkit 14 checklist for narrative reviews as a quality assurance measure and the Scale for the Assessment of Narrative Review Articles (SANRA) tool to self-assess our methodology.
Key content and findings: Over 130 references related to breast bioengineering were included. The analysis revealed four key applications: enhancing the quality of the skin envelope, improving the viability of fat grafting, creating breast shape and volume via bio-printing, and optimizing nipple reconstruction through engineering techniques. The primary identified approaches revolved around establishing structural support and enhancing cellular viability. Structural techniques predominantly involved the implementation of 3D printed, decellularized, or biocompatible material scaffolds. Meanwhile, promoting cellular content trophicity primarily focused on harnessing the regenerative potential of adipose-derived stem cells (ADSCs) and increasing the tissue's survivability and cell trophicity.
Conclusions: Tissue and bioengineering hold immense promise in the field of breast reconstruction, offering a diverse array of approaches. By combining existing techniques with novel advancements, they have the potential to significantly enhance the therapeutic options available to plastic and reconstructive surgeons.
Keywords: Breast surgery; acellular matrix; breast reconstruction; scaffold; tissue engineering.
2024 Annals of Translational Medicine. All rights reserved.