Chiral Topological Superconductivity in Superconductor-Obstructed Atomic Insulator-Ferromagnetic Insulator Heterostructures

Phys Rev Lett. 2024 Jan 19;132(3):036601. doi: 10.1103/PhysRevLett.132.036601.

Abstract

Implementing topological superconductivity (TSC) and Majorana states (MSs) is one of the most significant and challenging tasks in both fundamental physics and topological quantum computations. In this work, taking the obstructed atomic insulator (OAI) Nb_{3}Br_{8}, s-wave superconductor (SC) NbSe_{2}, and ferromagnetic insulator (FMI) CrI_{3} as an example, we propose a new setup to realize the 2D chiral TSC and MSs in the SC/OAI/FMI heterostructure, which could avoid the subband problem effectively and has the advantage of huge Rashba spin-orbit coupling. As a result, the TSC phase can be stabilized in a wide region of chemical potential and Zeeman splitting, and four distinct TSC phases with superconducting Chern number N=-1,-2,-3, 3 can be achieved. Moreover, a 2D Bogoliubov-de Gennes Hamiltonian based on the triangular lattice of obstructed Wannier charge centers, combined with the s-wave superconductivity paring and Zeeman splitting, is constructed to understand the whole topological phase diagram analytically. These results expand the application of OAIs and pave a new way to realize the TSC and MSs with unique advantages.