Recently, metal-organic frameworks (MOFs) have been widely developed due to the rich porosity, excellent framework structure and multifunctional nature. Meanwhile, a series of MOFs crystals and MOF-based composites have been emerged. However, the widespread applications of MOFs are hindered by challenges such as rigidity, fragility, solution instability, and processing difficulties. In this study, we addressed these limitations by employing an in-situ green growth approach to prepare a zeolitic imidazolate frameworks-8@poly (γ-glutamic acid) hydrogel (ZIF-8@γ-PGA) with hierarchical structures. This innovative method effectively resolves the inherent issues associated with MOFs. Furthermore, the ZIF-8@γ-PGA hydrogel is utilized for dye adsorption, demonstrating an impressive maximum adsorption capacity of 1130 ± 1 mg/g for methylene blue (MB). The adsorption behavior exhibits an excellent agreement with both the kinetic model and isotherm. Meanwhile, because the adsorbent raw materials are all green non-toxic materials, multiple applications of materials can also be realized. Significantly, the results of antibacterial experiments showed that the ZIF-8@γ-PGA hydrogel after in-situ growth of ZIF-8 had better antibacterial properties. Thus, the ZIF-8@γ-PGA hydrogel has great potential for development in wound dressings, sustained drug owing to its biocompatibility and antibacterial activity.
Keywords: Dye adsorption; MOF-based hydrogels; γ-PGA.
Copyright © 2024 Elsevier B.V. All rights reserved.